

SFS800 -OX/CX SFS2000-OX/CX

伺服张力器操作手册

Servo Tensioner Operation Manual

2024年11月

SFS系列伺服张力器

产品功能特点

1)、双伺服电机系统,实现全自动控制调节张力。

2)、配置专用通讯盒与PLC建立通讯,实现高效稳定可靠的通讯条件。

3)、可预设8段张力杆工作角度,通过I0开关量切换;同时PLC可以设定摆 臂角度,实现全自动控制调节张力。

4)、在线显示张力值、绕线线速度、绕线长度。

5)、报警功能:断线报警、故障报警、张力上/下限报警。

6)、多功能"菜单旋钮",所有设置可在本机屏上操作完成。

张力值 (g) 张力值 (g) 0.32N • M/3000rpm 800 2000 0.64N • M/3000rpm 45 1125 (图1-3) (图1-4) 240 600 120 300 24 60 线速度 (m/s) 线速度 (m/s) 0 200W伺服电机力矩与线速度关系 100W伺服电机力矩与线速度关系 (图1-1) (图1-2)

伺服电机特性参数曲线图

型号规格参数配置

SFS伺服张力器功能参数

(表1)

张力器型号 功能	SFS800系列	SFS2000系列
张力范围	1-800gf	200-2000gf
最高线速度	25m/s	9m/s
外形尺寸	265*150*55mm	270*150*75mm
额定功率	100W	200W
供电电压	DC48V	DC48V
产品重量	1.8KG	3.3KG
机壳材料	金属	金属
以太网通讯		
断线报警		
故障报警		
三段以上张力		
电机正/反转设置		
在线张力测量		
张力上/下限报警		
线速度显示		
张力显示比例/校对		
绕线长度计算		

张力杆和张力拉簧选用参数表

				(表2)
张力器型号	张力杆规格(mm)	拉簧型号	张力范围(gf)	参考线径(mm)
SFS800系列	SF1-150	T1、T2	1~20	0.02~0.06
	SF2-200	T2、T3、T5、T6	5~100	0.03~0.14
	SF2-150	T2、T3、T5、T6	10~170	0.05~0.19
	SF3-200	ST7	100~320	0.14~0.25
	SF3-150	ST7	130~420	0.16~0.28
	SF4-200	ST8	200~650	0.20~0.35
	SF4-150	ST8	280~860	0.23~0.40
SFS2000系列	SF4-200	ST8、ST9	200~1650	0.20~0.55
SFS2000余列	SF4-150	ST8、ST9	250~2200	0.23~0.70

◆ 标配为一根张力杆和对应张力范围的拉簧

◆ 根据张力范围匹配合适的张力杆及对应的弹簧

张力杆规格

			(表3)
序号	张力杆规格	参考线径	适用张力范围
1	SF1-150	0.02~0.10	1~30
2	SF2-150	0.05~0.20	10~200
3	SF2-200	0.02~0.14	2~100
4	SF3-150	0.10~0.32	50~550
5	SF3-200	0.10~0.29	50~450
6	SF4-150/200	0.14~0.65	100~2000

张力拉簧参数

								(表4)
拉簧型号	T1	Т2	Т3	T5	T6	ST7	ST8	ST9
丝径	0.3	0.4	0.4	0.5	0.6	1.0	1.0	1.1
筒径	6.1	7.4	6.0	6.0	7.3	10.7	10.7	11.8
有效圈数	129	91	98	77	60	40	36	36
自由长度	50	50	50	50	50	60	60	60
150长张力杆(gf)	3-9	10-20	20-40	40-110	55-170	130- 420	280- 860	750- 2200
200长张力杆(gf)		5-15	10-30	30-85	40-130	100- 320	200- 680	570- 1650

注:上述参数在默认工作角度38°,出线角度A°为90°(图6、图9)时所测得。

55mm 、

外形结构及挂线示意图

伺服电动摆臂工作说明:由程序控制 伺服电机,伺服电机通过蜗轮蜗杆带 动摆臂达到设定角度。

摆臂角度有三种设定方式:

1、手动设定:在角度设定界面进行设定如图 (15-4)

- 2、485通讯设定: 通过Modbus RTU通讯进行设定
- 3、以太网通讯设定:通过Modbus TCP通讯进行设定

(图6)

04 —

外形结构及挂线示意图

-05-

关于安装

安装注意事项:

安装张力器时注意出线角度规定在40[~]120[°]范围内。 挂线示意图、出线角度请参照"外形结构及挂线示意 图"说明。

把张力器安装在一个Φ16mm的安装柱上并锁紧五星手轮。

关于张力杆工作角度(送线角度)的工作说明

①、断线报警区间:当断线时,触发报警时张力杆所处角度。

②、待机区间。

③、8段预设区间。

④、工作区间:加速缓冲区。

⑤、故障报警区间:断线或者误操作等引起张力杆触发故障角 度时电机会立即停止。

注意: 当张力杆进入故障报警区间时, 电机将会停转、输出报警信号; 将张力杆返回至断线报警区间, 解除故障报警。

电气接线

张力器与通讯盒接口连接

提示:一个通讯盒可连接1~8台伺服张力器,最多连接8台张力器。张力器通讯站号规定1~8号设置,如需多台张力器连接时请使用标准 网线在张力器的 'com1、com2'相互对连即可,最后一台张力器的COM口需匹配一个120 Q的终端电阻(使用RJ45标准电阻)。

通讯盒设置

- 07 ------

在待机页面下旋动旋钮反色 选中'ID: 208'按下确认 进入设置页面。

在设置页面下旋动旋钮反色 选中所需项按下确认进入参 数设置。 01 连接上位机波特率设置,波特率 从19200、38400、76800、115200选择 一项来进行通讯,默认为115200。

02 设备号设置,设备号为本机通讯 站号,站号从208[~]223之间设置,默认 为208。

03 IP设置,本地IP地址设置。具体 设置方法:根据上位机或PLC的IP进行对应 设置将网络设置成同一网段,IP地址末位 不要冲突。

04 模式设置,模式设置规定为 'SFS22C'。其它模式不适用本张力 器的配置。

关于显示屏操作

	XHE↓ 本机站		i ∢—
	当前角度:50° A1	40°	
_	500	of	
	【线速度: 10m/		
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		
	补偿设定 本机	した と定	
1			I

菜单旋钮 (MENU) 介绍: 按下为确认; 左旋、右旋为移动反色光标/数值加减。 - 张力杆当前角度

一 通讯站点号

— 当前段的工作角度

— 当前张力值

- 张力显示单位(反色光标选中"gf"长按4秒可以改为"N")

— 实时线速度 — 功能块

为了保证测量值的准确性,定期清零校对,清零时测量轮上不能有负载。 1)手动清零校对方法:

1.1、反色光标不能在任何功能键上,长按两秒释放即可清零。

1.2、进入屏幕'补偿设定'界面里,选中'手动清零'按下旋钮确认。2)自动清零校对方法:

进入屏幕'补偿设定'界面里,选中'自动清零'的'开'按下旋钮确 认。出厂默认自动清零角度为断线报警角度,当张力杆角度大于等于断线报警 角度并保持15秒,张力值清零。

(图14)

(图15-4)

主界面 常用 常用 定 定 定 定 定 定 正 定 正 定 正 定 正 正 定 正 正 定 正 正 定 正 正 元 正 元 正 元 正 元 正 元 正 元 正 元 正 元 正 元 正 元 品 元 つ 二 元 正 元 品 元 つ 二 元 正 元 品 元 つ 二 元 二 二 正 元 品 元 つ " 和 代 当 前 の 空 の 二 二 下 元 品 元 つ " 和 代 告 一 前 预 役 的 段 位 二 下 元 品 元 つ " 和 代 会 四 で つ 加 法 定 " 本 机 送 二 で 一 二 下 元 品 元 つ " 和 代 会 四 で つ 加 読 正 一 正 一 元 二 つ " 和 代 会 に 下 元 二 つ " 和 代 会 に 二 下 元 品 つ つ " 和 代 会 四 で 一 本 記 一 つ " 和 代 会 辺 で 一 の 能 一 で 二 一 不 の 能 一 で 二 一 不 の " 本 代 会 四 で 一 の 記 一 つ " 本 一 で 二 一 の 記 一 つ " 本 代 会 一 で 二 一 の 記 一 つ " れ 一 役 二 一 二 一 の 記 一 つ 能 一 で 一 の 記 一 の 二 一 一 一 一 の 記 一 つ 記 一 一 四 つ 加 能 茂 立 " 一 一 一 一 一 一 一 一 一 一 一 一 一	上下限设定界面 └/下限报警盘设定 上/下限报警盘设定 上/下限报警盘设定 上環, 2000 gf 下限, -100 gf 理由 (图15-2)	本机设定界面
角度设定界面 ★ が ボ 本 4 5 5 5 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	 补偿设定界面 ※力值补偿设定 ※力值补偿设定 (100 % ※力位补偿 (100 % ※在补偿设定界面中旋转旋 (110 % (111 %) (111 %)	参数同步界面 ★祖幹号:1 ◆素同步 ○魚度同步 ○魚度同步 ○魚度同步 ○魚方用 ○生力用 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

(图15-5)

(图15-6) 设定。

(表6)

(表10)

通讯协议

本机地址:208[~]223, 默认为208

RS485通讯波特率 19200、38400、76800、115200,默认为115200。数据位: 8 ,奇偶校验: 无 ,停止位: 1 。 (表5) 寄存器描述

读写类型	寄存器高位	寄存器低位	寄存器数	描述
RO	0X73	0X00	32	读当前张力(只读)
RW	0X77	0X00~0x07	1或32	张力比例(1个寄存器写入,1或32个寄存器读)
RW	0X78	0X00~0x07	1或32	张力下限(1个寄存器写入,1或32个寄存器读)
RW	0X79	0X00~0x07	1或32	张力上限(1个寄存器写入,1或32个寄存器读)
RW	0x83	0x00~0x07	1或32	八段张力设置(单个段位1个寄存器写入,1或32个寄存器读)
RW	0XA0	0x00~0x07	1或32	八段张力设置(8个段位1个寄存器写入,1或32个寄存器读)
WO	0X85	0X00~0X07	1	断电保存
RW	0X96	0X01	1或32	摆臂角度设置

注:以上(表5)中地址除读取张力以外其他所有写入的命令均为断电不保存数据,如果需要断电保存必须执行 断电保存命令,断电保存命令切勿实时自动写入!

读取命令格

主机发送读取命令报文格式:

Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7
地址位	功能码	寄存器高位	寄存器低位	寄存器数量高位	寄存器数量低位	校验值低位	校验值高位

张力器应答报文格式:

张力器应答报文格式:(表7)											
Data0	Data1	Data2	Data3	•••••	Data N	Data N+1	Data N+2				
地址位	功能码	数据长度	数	据位,长度由Data2决定		校验值低位	校验值高位				

注: 返回数据位为0x8001表示张力器不在线或联系不上(即读数显示-32767)

读取范例:

以默认设备号208、	读取张力值100为例;	(表8)
发送命令报文为:D	00 03 73 00 00 08 4C C9	
接收命令报文为:D	0 03 10 00 64 00 64 00 64 00	64 00 64 00 64 00
6	54 00 64 AF B1	
いし (主の) 目 タ+	长久法即了0公平力器的平力店	中ゴい110公由げ会会

以上(表8)是一条指令读取了8台张力器的张力值,也可以从8台中任意读一个只需改变发送指令中的数据 位置和数据个数即可。单台张力器的读取位置参照'连线设置说明'所示。

写入命令格式

主机发送写入命令报文格式:

主机发送	E机发送写入命令报文格式: (表9)													
Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7	Data8	DataN	DataN+1				
地址位	功能码	寄存器 高位	寄存器 低位	寄存器数量 高位	寄存器数量 低位	数据长度	数据位 高位	数据位 低位	CRCL	CRCH				

张力器应答报文格式:

Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7
地址位	功能码	寄存器高位	寄存器低位	寄存器数量高位	寄存器数量低位	CRCL	CRCH

(+12)

写入范例:

以默认设备号208、写入上限值2000为例;	(表11)
发送命令报文为: D0 10 79 01 00 01 02 07 D0 DC BF	
接收命令报文为: D0 10 79 01 00 01 5B 14	

以上(表11)是写入1台张力器的上限张力值,如要写8台须发指令8条方可完成全部写入,写入位置序号 按照'连线设置说明'所示连接说明。

伺服张力器通讯盒can接口连接张力器图示

连线设置说明:

在通讯模式中请选择'SFS22C'模式确认设置,接口连接示意图 与张力器连接好,如图(12-1)、12-2)所示,,本can端口支持 最大连接8台张力器,张力器站号规定设置1~8号站,8个站号对应 8个寄存器地址。例如预设8段张力值对应寄存器地址为: 0X8300~0X8307、设定上限值对应寄存器地址为: 0X7900~0X7907, 等等。伺服张力器通讯盒与张力器连接成功后在通讯盒显示屏上可 显示当前的连接数量,如连接1台即显示连接数'1'连接2台即显示 连接数 '2' 等。

以太网口通讯操作指南

通讯盒以太网口通讯协议 Modbus TCP。在选择以太网通讯PLC或工控屏时请进入设置界面 -选择 IP 设置,默认显示 IP: 192.0.0.0,请对 IP 进行自行设置,选择DCHP 模式会转换为自 动配置,设置完成后点击确认,端口号固定 5000。

1	读取命令	⋧发送数	据格式									(表12)
	Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7	Data8	Data9	Data10	Data11
	事务识 别码高 位	事务识 别码低 位	协议识 别号高 位	协议识 别号低 位	数据长 度高位	数据长 度低位	地址位	功能码	寄存器 高位	寄存器 低位	寄存器 数量高 位	寄存器 数量低 位

上 六	tr D	5*	H +	中.	44	<u> </u>
T	:W	V 43	7V 1	1古/	合	TL
		~ 2	~ 1	н	н	- 4

1女4义女义1	百百八										(衣13)
Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7	Data8	Data9	•••••	DataN
事务识 别码高 位	事务识 别码低 位	协议识 别号高 位	协议识 别号低 位	数据长 度高位	数据长 度低位	地址位	功能码	数据长 度	数据位,	长度由D	ata决定

写入命令发送数据格式

写入命令发送数据格式 (表1									(表14)				
Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7	Data8	Data9	Data10	Data11	Data12	
事务识 别码高 位	事务识 别码低 位	协议识 别号高 位	协议识 别号低 位	数据长 度高位	数据长 度低位	地址位	功能码	寄存器 高位	寄存器 低位	寄存器 数量高 位	寄存器 数量低 位	数据长 度	数据位

接收数据构	各式										(表15)
Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7	Data8	Data9	Data10	Data11
事务识 别码高 位	事务识 别码低 位	协议识 别号高 位	协议识 别号低 位	数据长 度高位	数据长 度低位	地址位	功能码	寄存器 高位	寄存器 低位	寄存器 数量高 位	寄存器 数量低 位

通讯盒IO控制切换预设8段张力接口

开关量(npn)(S1、S2、S3)3位组合对应表

			(表16)
线序 张力段	S1	S2	S3
第一段(T1)	0	0	0
第二段(T2)	1	0	0
第三段(T3)	0	1	0
第四段(T 4)	1	1	0
第五段(T5)	0	0	1
第六段(T6)	1	0	1
第七段(T7)	0	1	1
第八段(T8)	1	1	1

使用问题与解决方法

常见故障分析与解决方法									
序号	故障现象	故障原因	解决方法						
		电源配置不正确	选用功率足够的品牌开关电源						
1		张力与线径不匹配	调节张力到改线径的标准张力 更换合适的张力杆或拉簧						
	派川杆抖动入,派 刀个稳	线打滑;羊毛毡没夹紧或脏	检查是否正确穿线,重新正确穿线 清理并夹紧或更换羊毛毡						
		电机参数设置不当	通过我司专用上位机软件 更改电机参数						
2	断线不报警	插头接触不良	检查线路是否正常						
2	日二业上住上南后业上住了同	张力值未清零	通过用户上位机或菜单旋钮清零						
5	显示张刀值与买际张刀值个问	自行调整张力值比例或校准	通过用户上位机或菜单 旋钮重新设置						
4	故障报警	张力杆到底触发故障报警	将张力杆回到断线报警区间 后恢复正常						
5	张力上/下限报警	张力值超出所设置的上下限	使张力回到正常值或者更 改张力上/下限						
6	断线报警	绕线过程中漆包线断了	重新穿好线正常绕线即可						
7	电机不锁	电机电流过载保护	电源重启						
8	开机无使能	通讯盒与张力器未连接或已断开	查看通讯盒的屏幕里面显 示的连接数是否正堂						

注:张力器如遇故障的异常情况,应立即停止工作排除故障,或者返厂维修。

注意事项

- 1、请选用功率足够的品牌开关电源,电压为DC48V。
- 2、根据线径和所需张力范围选用合适的张力杆和拉簧。
- 3、初始挂线时或者发生意外断线重新挂线时,需先关闭电源;如错误操作引起主送线轮缠绕了多圈漆包线, 应先关闭该张力器的电源后清理被缠绕的线。
- 4、挂线前应检查羊毛毡的松紧度,并调节至漆包线在送线轮上不打滑为合适,漆包线务必从羊毛毡右侧穿过。
- 5、走线方法请参照张力器的"挂线示意图"。
- 6、定期做好过线部件的清洁保养:羊毛毡固定使用部位脏了应及时转换角度或更换新的羊毛毡;主动送线轮内的胶圈脏了,应拆下来清洗干净;其它防跳线器也应定期清理,防止轮子卡死或打滑。
- 7、张力器报警时,应及时解除报警,避免出现人为损坏。
- 8、通讯盒可连接我司专用上位机软件对报警角度以及伺服电机参数进行设置,该操作需在厂家专业技术 人员指导下使用。

售后保证

保修期为一年,在保修期内,由产品自身原因产生的故障,本公司将免费维修。属于以下情况, 不在保修范围内。

超过保修期或人为损坏;

未经本公司授权对产品进行改造或维修产生的故障;

张力杆、拉簧、羊毛毡、防跳线器等易损件;

因客户要求而改变了基本结构的产品;

张力在线测量属于辅助功能,不在保修范围内;

未使用本公司标准配件或者未按本说明书要求使用、维护、保养造成的损坏;

在指定之外的电源(电压、频率)的情况下使用或者在电源异常情况下使用导致的故障;

工厂地址:中国德清新安镇运河智谷产业园28幢 电话:0571-86179330 86179918 86179916 85195235 传真:0517-85195135 86179917 http://www.china-nhe.com